# 卷积神经网络 (CNN)

下面证明卷积的平移等变性:

x[u]=x[ut]x'[u] = x[u-t], y[v]=u=+x[u]ϕ[vu]y[v] = \sum_{u=-\infty}^{+\infty}x[u]\phi[v-u], 则

y[v]=u=+x[u]ϕ[uv]=u=+x[ut]ϕ[uv]=y[vt].y'[v] = \sum_{u=-\infty}^{+\infty}x'[u]\phi[u-v] = \sum_{u=-\infty}^{+\infty}x[u-t]\phi[u-v] = y[v-t].

# 群卷积神经网络 (G-CNN)

群卷积的定义为

(xψ)[v]=uZ2x[u]ψ[gv1u].(x \star \psi) [v] = \sum_{u \in \mathbb{Z}^2} x[u] \psi[g_v^{-1}u].