好,我的物理知识正在逐渐唤醒。

# 背景

前情回顾:

上一节中,简单总结了达朗贝尔原理,实际上就是惯性力。但是并没有作进一步的阐释,比如如何从达朗贝尔原理引出拉格朗日力学的思想等等。

首先注意到达朗贝尔原理的形式:

i=1n(Fimir¨i)δri=0.\sum_{i=1}^n (\bm{F}_i - m_i \ddot{\bm{r}}_i) \cdot \delta \bm{r}_i = 0.

这里存在的最大问题就是虚位移 δri\delta \bm{r}_i 在有约束情况下并不独立,难以分析,因此可以通过广义坐标进行简化。

# 坐标变换关系

现在引入力学系统的 ss 个独立广义坐标 q1,q2,,qsq_1, q_2, \dots, q_s. 那么径矢可以由广义坐标和时间进行表示:

ri=ri(q1,q2,,qs,t),i=1,2,,n,\bm{r}_i = \bm{r}_i(q_1, q_2, \dots, q_s, t), \quad i = 1, 2, \dots, n,

该式称为坐标变换关系

# 拉格朗日关系

通过对坐标变换关系进行计算,可以得到拉格朗日关系。下面简单重复一遍推导,推导过程仍然源自梁昆淼老师的《理论力学》。

对坐标变换关系求导,得到

r˙i=dridt=ri(q,t)t+α=1sri(q,t)qαq˙α,\dot{\bm{r}}_i = \frac{\mathrm{d} \bm{r}_i}{\mathrm{d} t} = \frac{\partial \bm{r}_i(q,t)}{\partial t} + \sum_{\alpha=1}^s \frac{\bm{r}_i(q,t)}{\partial q_\alpha} \dot{q}_\alpha,

再对 q˙β\dot{q}_\beta 求偏导,得到

r˙iq˙β=q˙β(rit+α=1sriqαq˙α)=qβ(riqβq˙β)=riqβ,\frac{\partial \dot{\bm{r}}_i}{\partial \dot{q}_\beta} = \frac{\partial}{\partial \dot{q}_\beta}\left( \frac{\partial \bm{r}_i}{\partial t} + \sum_{\alpha=1}^s \frac{\bm{r}_i}{\partial q_\alpha} \dot{q}_\alpha \right) = \frac{\partial}{\partial q_\beta} \left(\frac{\partial \bm{r}_i}{q_\beta} \dot{q}_\beta \right) = \frac{\partial \bm{r}_i}{\partial q_\beta},

r˙iq˙β=riqβ.\frac{\partial \dot{\bm{r}}_i}{\partial \dot{q}_\beta} = \frac{\partial \bm{r}_i}{\partial q_\beta}.

其中,第二个等号使用了 ri\bm{r}_i 只与 q,tq,t 有关而与 q˙\dot{q} 无关这一事实。

类似地,将坐标变换关系求导后的式子对 qβq_\beta 求偏导,得到

qβ(ddtri)=ddt(qβri).\frac{\partial}{\partial q_\beta} \left(\frac{\mathrm{d}}{\mathrm{d} t} \bm{r}_i\right) = \frac{\mathrm{d}}{\mathrm{d} t} \left( \frac{\partial}{\partial q_\beta} \bm{r}_i \right).

这两式称为拉格朗日关系

# 拉格朗日方程

将坐标变换关系代入到之前的达朗贝尔原理中,就可以得到

iFiδri=i(Fiαriqαδqα)=α(iFiriqα)δqα=αQαδqα,\sum_i \bm{F}_i \cdot \delta \bm{r}_i = \sum_i \left(F_i \cdot \sum_\alpha \frac{\partial \bm{r}_i}{\partial q_\alpha} \delta q_\alpha \right) = \sum_\alpha \left(\sum_i \bm{F}_i \cdot \frac{\partial \bm{r}_i}{\partial q_\alpha}\right) \delta q_\alpha = \sum_\alpha Q_\alpha \delta q_\alpha,

其中

Qα=iFiriqαQ_\alpha = \sum_i \bm{F}_i \cdot \frac{\partial \bm{r}_i}{\partial q_\alpha}

称为广义力

另一部分懒得推了... 抽空补上。

直接到结论吧。

α=1s(QαddtTq˙α+Tqα)δqα=0,\sum_{\alpha=1}^s \left(Q_\alpha - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial T}{\partial \dot{q}_\alpha} + \frac{\partial T}{\partial q_\alpha} \right)\delta q_\alpha = 0,

其中 T=i12mir˙i2T = \sum_i \frac{1}{2} m_i |\dot{r}_i|^2 是系统的动能。注意到这里的各个广义坐标 qαq_\alpha 是相互独立的,因此就直接得到

Qα=ddtTq˙αTqα=0,α=1,2,,s.Q_\alpha = \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial T}{\partial \dot{q}_\alpha} - \frac{\partial T}{\partial q_\alpha} = 0, \quad \alpha = 1, 2, \dots, s.

这就是拉格朗日方程 (Lagrange equation). 即广义动量的时间变化率等于广义主动力与拉格朗日力之和

# 主动力全是保守力的系统的拉格朗日方程

如果主动力全是保守力,那么就可以构建一个势能函数 V(r1,r2,,rn,t)V(\bm{r}_1, \bm{r}_2, \dots, \bm{r}_n, t), 使得

Fi=iV.\bm{F}_i = - \nabla_i V.

于是广义力

Qα=iFiriqα=iiVriqα=Vqα,α=1,2,,s.Q_{\alpha} = \sum_i \bm{F}_i \cdot \frac{\partial \bm{r}_i}{\partial q_\alpha} = - \sum_i \nabla_i V \cdot \frac{\partial \bm{r}_i}{\partial q_\alpha} = -\frac{\partial V}{\partial q_\alpha}, \quad \alpha = 1, 2, \dots, s.

然后拉格朗日方程就转变成了

ddtTq˙α(TV)qα=0,α=1,2,,s.\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial T}{\partial \dot{q}_\alpha} - \frac{\partial (T-V)}{\partial q_\alpha} = 0, \quad \alpha = 1, 2, \dots, s.

注意到势能 VV 仅是广义坐标的函数,与广义速度无关,因此有

ddt(TV)q˙α(TV)qα=0,α=1,2,,s.\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial (T-V)}{\partial \dot{q}_\alpha} - \frac{\partial (T-V)}{\partial q_\alpha} = 0, \quad \alpha = 1, 2, \dots, s.

这里定义拉格朗日量 (Lagrangian)

L=TV,L = T-V,

则上述拉格朗日方程简化为

ddtLq˙αLqα=0,α=1,2,,s.\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{q}_\alpha} - \frac{\partial L}{\partial q_\alpha} = 0, \quad \alpha = 1, 2, \dots, s.

# Ref

  • Largangian mechanics - Wikipedia
  • 【分析力学】电磁场中带电粒子的 Lagrange 量和 Hamilton 量 - Sebastian 的文章 - 知乎
  • 拉格朗日量与哈密顿量 -- 分析力学入门 - Monsoon 的文章 - 知乎