# 特征值实对称矩阵的特征多项式的每一个复根都是实数,从而它们都是特征值。证明:Aα=λα⇒{α⊤Aαˉ=α⊤λαˉα⊤Aα=α⊤λˉαˉ⇒λˉ=λA \boldsymbol{\alpha} = \lambda \boldsymbol{\alpha} \Rightarrow \left\{ \begin{aligned} & \boldsymbol{\alpha}^\top A \bar{\boldsymbol{\alpha}} = \boldsymbol{\alpha}^\top \lambda \bar{\boldsymbol{\alpha}} \\ & \boldsymbol{\alpha}^\top A \boldsymbol{\alpha}= \boldsymbol{\alpha}^\top \bar{\lambda} \bar{\boldsymbol{\alpha}} \end{aligned} \right . \Rightarrow \bar\lambda = \lambdaAα=λα⇒{α⊤Aαˉ=α⊤λαˉα⊤Aα=α⊤λˉαˉ⇒λˉ=λ